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Abstract

Combined conduction–radiation problem is solved using the collapsed dimension method. One-dimensional gray

planar absorbing, emitting and anisotropically scattering medium is considered. Non-dimensional medium temperature

and heat flux distributions are found for various values of boundary temperature, optical thickness, boundary emis-

sivity and conduction–radiation parameter. Effects of scattering albedo and anisotropy factor are also discussed. For

comparison, problems considered are also analyzed with the discrete transfer method and the exact method. Collapsed

dimension method is found to give excellent comparison for various radiative parameters considered. � 2002 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Over past three decades, considerable attention has

been given to the problems associated with combined

conduction and radiation heat transfer in participating

medium. Some practical applications for such problems

include the study of heat transfer in furnaces, IC en-

gines, gas turbine combustors, porous materials, fibrous

and foam insulations, manufacturing of glass, fire pro-

tection, and so on.

First successful treatment to conjugate conduction–

radiation problem in one-dimensional planar medium is

attributed to Viskanta and Grosh [1,2]. Subsequently,

Viskanta [3] analyzed the effect of scattering albedo on

conjugate mode heat transfer. The effect of anisotropy

factor was introduced by Yuen and Wong [4] in their

analytical formulation of combined conduction–radia-

tion problem in one-dimensional planar medium. All

these analytic treatments had been for one-dimensional

cases. Owing to difficulties in implementing analytic

formulations to conjugate mode problems in multi-

dimensional enclosures, in the past decades, a variety of

radiation models such as Monte Carlo method (MCM),

zone method, discrete ordinate method (DOM), discrete

transfer method (DTM), discretized intensity method,

finite volume method (FVM), product integration

method, etc. have come up. These methods have been

attempted by various investigators for combined con-

duction–radiation problems in one-dimensional Carte-

sian geometry [5–10]. However, each of these methods

has its own merits and demerits [11,12] and, therefore,

search for an efficient radiation model still exists.

Major problems with most of the methods have been

to:

1. have limited applicability in solving only the radiative

part of the problem,

2. problem in coupling the radiative part of the problem

to the conductive and/or convective parts, and

3. excessive computational time.

For example, MCM works very well for the radiative

part of the problem, but has difficulty in treating the

conjugate radiation, conduction and/or convection

problems [11,12]. Zone method too handles radiative

part very well but faces problem in conjugate modes

[11]. Other methods such as DOM, P–N approximation,

which can handle the conjugate problems, suffer from

some other limitations.
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In the present work, the collapsed dimension method

(CDM) [13–15] is applied for the first time to the con-

jugate conduction–radiation problem in one-dimen-

sional absorbing, emitting and anisotropically scattering

planar medium. CDM is the latest of all the methods

and is free from most of the limitations faced by other

methods. In this method, three-dimensional radiative

information is collapsed to the two-dimensional solution

plane in terms of effective intensity and optical thickness

coefficient. As all radiative information are collapsed to

the two-dimensional solution plane, the form of the

governing equations in CDM is completely different

than that of the rest of the methods. Complete descrip-

tion of the methods is available in [14].

2. Formulation

Consideration is given to a one-dimensional gray

planar medium. South and the north boundaries of the

medium are at arbitrary temperatures TS and TN, re-

spectively. The medium is absorbing, emitting and an-

isotropically scattering. Thermal conductivity of the

medium is k and is assumed constant. Extinction coef-

ficient b of the medium is also assumed constant.

In absence of convection and heat generation,

equation for conservation of total energy in non-di-

mensional form is written as

d2h
ds2

¼ 1

4N
dWR

ds
; ð1Þ

where h is the non-dimensional medium temperature.

Here for non-dimensionalization of temperature, south

boundary temperature TS has been taken as reference.

WR is the non-dimensional radiative heat flux and N is

the conduction–radiation parameter defined as

N ¼ kb
4rT 3

S

For the problem considered, non-dimensional boundary

temperatures are given by

hð0Þ ¼ hS ¼ 1; hðsLÞ ¼ hN: ð2Þ

2.1. CDM Formulation

Right-hand side of Eq. (1) contains divergence of

radiative heat flux dWR=ds, which in CDM is given as

[14]

dWR

ds
¼ gð1� xÞ ph4

�
� G0�

2

�
: ð3Þ

In Eq. (3), g is the optical thickness coefficient (OTC), x
is the scattering albedo and G0� is the non-dimensional

effective incident radiation. In CDM, G0� is given by [14]

G0� ¼ G0

rT 4
S

2

¼
Z 2p

0

I�ðaÞda; ð4Þ

where I� is the non-dimensional effective intensity (EI)

defined as

Nomenclature

a1 anisotropy factor

G incident radiant energy in DTM formulation

G0 effective incident radiant energy in CDM

formulation

I effective intensity in CDM formulation

i intensity in DTM formulation

j indices

k thermal conductivity

N conduction–radiation parameter

M total numbers of rays

q net heat flux

S source function

T temperature

Greek symbols

b extinction coefficient

h non-dimensional temperature

g optical thickness coefficient

s optical thickness

a planar angle appearing in CDM

Da angular thickness of the discrete plane

W non-dimensional heat flux

x scattering albedo

r Stefan–Boltzmann constant

c polar angle in DTM

/ azimuthal angle in DTM

� emissivity

Subscript

av average

b blackbody

C conductive

L length

n nth ray

N north

R radiative

S south

T total

Superscript

� non-dimensional quantities
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I� ¼ I
rT 4

S

2

ð5Þ

and a is the angle of the EI measured from the control

surface. In Eq. (4), EI at any point nþ 1 in the direction

a is given by [14]

I�nþ1 ¼ I�n expð�sgÞ þ S 0� ½1� expð�sgÞ	: ð6Þ

This definition of I� is based on the fact that the optical

distance between points n and nþ 1 along the ray di-

rection a is small enough and the source function given

by the following equation can be assumed constant

over the path-leg. This constant value of the source

function is equal to its average values at points n and

nþ 1.

S0� ¼ ð1� xÞh4 þ x
2p

G0��
þ 2a1 sin aWRðsÞ

�
: ð7Þ

It should be noted that the expression of the source

function given by Eq. (7) in terms of effective incident

radiation G0� and radiative heat flux WRðsÞ results from
approximating anisotropic phase function by linear

phase function [14,15]

pða0 ! aÞ ¼ 1þ a1 sin a sin a0:

In the above equations, a1 is the anisotropy factor and

its values fall in the range �16 a1 6 þ 1. For the case of

isotropic scattering, a1 ¼ 0. In CDM, to find out non-

dimensional net radiative heat flux WR appearing in Eq.

(7), heat flux is first found due to EIs spanned over a

semi-circle, 06 a6 p. Then radiative heat flux due to EIs

spanned over other half, i.e., p6 a6 2p has to be found

and vector sum of the two be taken. Heat flux due to EIs

spanned over 06 a6 p is given by [14]

WR ¼ 1

2

Z p

a¼0

I�ðaÞ sin ada: ð8Þ

For evaluation of G0� and WR, Eqs. (4) and (8) are nu-

merically integrated as

G0� ¼
Z 2p

0

I�ðaÞda ¼
X2M
n¼1

I�ðanÞDan; ð9Þ

WR ¼ 1

2

Z p

0

I�ðaÞ sin ada ¼ 1

2

XM
n¼1

cnI�ðanÞ; ð10Þ

where in general

cn ¼ cos an

����� þ Dan

2

	
� cos an

�
� Dan

2

	����: ð11Þ

In Eq. (10), M is the number of EIs spanned over

06 a6 p and in Eq. (11), Dan is the discrete angle in the

solution plane over which nth EI is assumed constant. In

the present case, Dan is same for all EIs. To solve energy

equation (1), the divergence of radiative heat flux given

by Eq. (3) is substituted in Eq. (1). This yields the desired

governing integro-differential equation to be solved in

CDM

d2h
ds2

¼ 1

4N
gð1� xÞ ph4

�
� G0�

2

�
: ð12Þ

It should be noted that Eq. (12) is subjected to the

boundary conditions given by Eq. (2).

2.2. DTM Formulation

In DTM, divergence of radiative heat flux dWR=ds
appearing in Eq. (1) is given by [16]

dWR

ds
¼ 4ð1� xÞ h4

�
� G�

4p

�
; ð13Þ

where G� is the non-dimensional incident radiation de-

fined in DTM. If radiation is assumed azimuthally

symmetric, which is always true for a planar geometry,

G� is given by [16]

G� ¼ G
rT 4

S

p

¼ 2p
Z p

c¼0

i�ðcÞ sin cdc; ð14Þ

where i� is the non-dimensional intensity and c is the

polar angle. At this point it is worth noting that in

DTM, like other methods such as DOM, FVM, etc.,

intensity i�ðc;/Þ is considered in three-dimensional

space. However, in CDM, we deal with EI I�ðaÞ which is

defined only in the two-dimensional solution plane.

Because in CDM, all radiative phenomena are first

collapsed in the two-dimensional solution plane, ex-

pressions for all radiative terms like intensity, heat flux,

incident radiation, divergence of radiative heat flux, etc.

are different than the corresponding terms in other ra-

diation models. Further, for comparison purpose, only

the ultimate radiative quantities like temperature and

heat flux calculated from CDM can be compared with

other methods. In CDM, the assumption of azimuthally

symmetric radiation is not at all required at any stage in

the formulation.

With similar arguments as given for CDM, intensity

at any point nþ 1 in the ray direction c is written as

[16]

i�nþ1 ¼ i�n expð�sÞ þ S�½1� expð�sÞ	; ð15Þ

where in the above equation, intensity has been nor-

malized as

i� ¼ i
rT 4

S

p

:

In DTM, linear anisotropic phase function is given by

pðc0 ! cÞ ¼ 1þ a1 cos c cos c0:

For this situation, source function, appearing in Eq.

(15), in terms of G� and WR is given by
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S� ¼ ð1� xÞh4 þ x
4p

G�½ þ a1p cos c WRðsÞ	: ð16Þ

It should be noted that the meanings of angle c ap-

pearing in DTM and angle a in CDM are different. In

CDM, angle a is defined in the two-dimensional solution

plane and is measured from the surface. It varies in the

range 06 a6 2p. In DTM, c is the polar angle. It is

defined in three-dimensional space and as per conven-

tion, it is measured from normal to the surface. For a

sphere, it varies from 06 c6 p. In DTM, for azimuth-

ally symmetric radiation, non-dimensional net radiative

heat flux WR is given by

WR ¼ 2

Z p

c¼0

i�ðcÞ sin c cos cdc: ð17Þ

For numerical evaluation of Eqs. (14) and (17), the en-

tire solid angle is divided into sub-solid angles DX and

each sub-solid angle DX is assumed centered around

each intensity. The intensity is assumed constant over

DX. For azimuthally symmetric radiation, i.e.,

iðc;/Þ ¼ iðcÞ, the entire polar angle (06 c6 p) can be

discretized instead of the solid angle. In this situation, G�

and WR are, respectively, found from

G� ¼ 2p
XM
n¼1

i�ðcnÞ sin cn sinDcn; ð18Þ

WR ¼ 2
XM
n¼1

i�ðcnÞ sin cn cos cn sinDcn: ð19Þ

To solve energy equation (1), the divergence of radiative

heat flux given by Eq. (13) is substituted in Eq. (1) which

yields the desired governing integro-differential equation

to be solved in DTM

d2h
ds2

¼ 1� x
N

h4

�
� G�

4p

�
: ð20Þ

3. Solution procedure

As the solution procedure of the energy equation (1)

is same in CDM and DTM, the same is discussed herein

with reference to CDM only. To solve Eq. (12), it is

expressed in finite difference form as

hj�1 � 2hj þ hjþ1

Ds2
¼ 1

4N
gð1� xÞ ph4

j

"
�
G0�

j

2

#
: ð21Þ

Depending upon the values of conduction–radiation

parameter N, solution of Eq. (21) proceeds in two ways.

For N P 0:01, first a linear temperature profile is gues-

sed for the right-hand side of Eq. (21). With this guess

value of h, incident radiation G0� is calculated. For

evaluation of G0� , EIs I� are found from Eq. (6). The

calculation of intensity starts from the bounding wall.

To find out intensity values next to the bounding wall

where nþ 1 in Eq. (6) is 1, intensity values at the

bounding wall are required. For a gray boundary having

emissivity �w and temperature Tw, boundary intensity in

CDM is found from [14]

I�0 ¼ �wT 4
w

T 4
S

þ 1� �w
2

Z p

a¼0

I�
�ðaÞ sin ada: ð22Þ

In Eq. (22), I�
�
are EIs incident at the point of interest

on the concerned boundary from which the boundary

intensities are to be found. First term on right-hand side

of Eq. (22) is the emitted component whereas the second

term represents the reflected component of intensity. If

�S ¼ �N ¼ 1, the bounding intensities from the south and

the north boundaries are 1 and h4
N, respectively. In case

of DTM, corresponding form of Eq. (22) is given by

i�0 ¼
�wT 4

w

T 4
S

þ 2ð1� �wÞ
Z p=2

c¼0

i�
�ðcÞ cos c sin cdc: ð23Þ

In CDM, OTC g values for Eqs. (6) and (21) are cal-

culated from the expressions given in [14]. With right-

hand side of Eq. (21) known, left-hand side is solved for

hj using the Thomas algorithm. To get the convergence,

under-relaxation is used for small values of N. For val-

ues of N < 0:01, again a linear temperature profile is

guessed as in the first case. However, in this case, left-

hand side of Eq. (21) and G0� are calculated simulta-

neously. Strong under-relaxation is used to get the

convergence.

4. Results and discussion

Shown in Figs. 1(a) and (b) are the variations of non-

dimensional gas temperature h with normalized optical

depth s=sL. For results presented in the figure, north

boundary temperature hN is half of that of the south

boundary temperature hS (hN ¼ 0:5hS) and �N ¼ �S ¼ 1.

Medium is absorbing–emitting.

In Fig. 1(a), temperature distributions are given for

sL ¼ 1, whereas in Fig. 1(b), the same are given for

sL ¼ 0:1. For both values of sL, temperature distribu-

tions are given for various values of N in the range 0–10.

It should be noted that higher values of N signify con-

duction dominated situation whereas when its value

decreases, radiation starts dominating. For N ¼ 0, the

problem is entirely radiation dominated and the prob-

lem becomes the case of radiative equilibrium

(r � WR ¼ 0). Above fact is clear from these figures.

When values of N are large, temperature profiles are

almost linear. As values of N decrease, radiation domi-

nates, temperature profile changes. However, for value

of N ¼ 0, conduction is absent, gas temperature at the

boundaries are not equal to the boundary temperatures.
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This phenomena is known as temperature slip and is

common for radiative equilibrium problems.

In the present work, it has been found that the

number of iterations required for conduction dominated

situations is very less compared to radiation dominated

cases. For example, for sL ¼ 1 and N P 1, convergence

is obtained in only 2–3 iterations whereas for N ¼ 0:1,
0.01, 0.001 and 0.0001, approximately 80, 120, 600 and

650 iterations are required, respectively. Under relax-

ation is required for N 6 0:01.
In Fig. 2, effect of scattering albedo on temperature

distribution is shown. Both boundaries are assumed

black. Fig. 2(a) shows the temperature distributions for

N ¼ 0:1 whereas temperature distributions for N ¼ 0:01
are given in Fig. 2(b). Three different values of scattering

albedo (x ¼ 0:0, 0.5 and 1.0) are considered. For these

values of x, temperature distributions are given for two

sets of boundary temperatures (hN ¼ 0:5 and 0:1).
x ¼ 0:0 represents absorbing–emitting situation whereas

for x ¼ 1:0, medium is purely scattering. Since in the

case of x ¼ 1:0, as seen from energy Eq. (12), temper-

ature profile becomes independent of radiation and

hence a linear profile results. Further, as seen from these

figures, in radiation dominated situation (for lower

values of N), scattering albedo x has more pronounced

effect.

Effect of anisotropy factor a1 on temperature distri-

bution is shown in Figs. 3(a) and (b). Distributions are

given for sL ¼ 1:0 and 0.1, conduction–radiation pa-

rameter N ¼ 0:1 and the north boundary temperature

hN ¼ 0:5. For scattering situation, scattering albedo x is

taken as 0.5. Results are presented for the two extreme

limits of a1, i.e., a1 ¼ þ1 signifying fully forward scat-

tering and a1 ¼ �1 signifying fully backward scattering

and isotropic scattering a1 ¼ 0, x ¼ 0:5. As a reference,

temperature distributions for absorbing–emitting situa-

tion x ¼ 0 have also been plotted. It is clear from these

figures that for a given value of x, a1 has negligible effect
on temperature distribution.

Effect of boundary emissivities on temperature dis-

tribution is shown in Fig. 4. Emissivity values of both

north and south boundaries �N and �S are taken to be

same (�N ¼ �N ¼ �). Medium is considered absorbing–

emitting, and north boundary temperature hN ¼ 0:5.
Three different values of emissivity � ¼ 0:1, 0.5 and 1.0

are considered. Effect of boundary emissivity � on h has

been shown for two different values of N (¼ 0.1 and

0.01). Optical thickness sL is 1.0 in both the cases. It is

(a) (b)

Fig. 2. Effect of scattering albedo x on non-dimensional gas temperature h.

(a) (b)

Fig. 1. Effect of conduction–radiation parameter on non-dimensional gas temperature h.
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observed from Figs. 4(a) and (b) that as the boundary

emissivities decrease, in other words, as the boundaries

become more and more reflecting, variation of h values

for � 6¼ 1 with respect to h values for � ¼ 1 increases in

the vicinity of the hot (south) boundary. Further, this

variation is more for the lower values of N.

In the conduction–radiation problem considered in

this work, divergence of total heat flux equals zero, i.e.,

r � WT ¼ 0, which implies WT ð¼ WC þ WRÞ is constant
at all s=sL in the medium. However, conduction heat

flux WC and radiation heat flux WR will be different at

different s=sL in the medium. For given values of N,

how conduction and radiation heat fluxes contribute to

the total heat flux is depicted in Figs. 5(a)–(f). For this,

in all the cases, optical thickness sL is taken as 10 and

the north boundary temperature hN ¼ 0:5. Medium is

considered to be absorbing–emitting and the boundaries

are taken as black. It is clear from these figures that

when N is large, major contribution to WT comes from

conduction. With decrease in its value, contribution

from radiation starts increasing. For N ¼ 0:01, the total
heat flux is primarily due to radiation. Other interesting

point to be noted from these figures is that conduction

heat flux is always higher at the cold (north) boundary,

whereas radiation heat flux is always higher at the hot

(south) boundary.

To have some quantitative idea, how CDM results

for total heat flux WT computed using different number

of rays compare with DTM results generated by the

authors and exact results [1,4], some sample data have

been presented in Tables 1–3. In Table 1, results are

presented for absorbing–emitting medium confined be-

tween black boundaries. Here, comparisons are made

for four values of sL and two sets of boundary temper-

atures. For given values of sL and boundary tempera-

tures, N values are taken to be 0.0, 0.1, 1.0 and 10. Here,

the CDM results for different number of rays are com-

pared with the DTM results for different number of rays

and exact results given in [1]. In Table 2, comparisons of

CDM results for different number of rays are made with

DTM results for different number of rays and exact re-

sults [4]. These comparisons are made for three medium

conditions, e.g., (a) absorbing–emitting x ¼ 0, (b) ab-

sorbing, emitting and isotropically scattering with

x ¼ 0:5, and (c) absorbing, emitting and anisotropically

scattering with x ¼ 0:5 and a1 ¼ �1:0 and 1.0. For gi-

ven values of x and a1, results are compared for sL ¼ 1:0
and N ¼ 1:0. Here the boundaries are assumed black. In

(a) (b)

Fig. 4. Effect of wall emissivity � on non-dimensional gas temperature h; �N ¼ �S ¼ �.

(a) (b)

Fig. 3. Effect of anisotropy factor a1 on non-dimensional gas temperature h.
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Table 3, CDM results are compared with [1]. For a given

value of sL, boundary temperatures and N, emissivity of

both the boundaries have been taken to be 0.1. It is

observed from these tables that even with less number of

rays, CDM yields excellent comparison with other

methods. For given sL and boundary temperatures hN

and hS, for higher values of N, CDM and DTM require

less number of rays to give analytic accuracy, whereas

with decrease in values of N, i.e., in radiation dominated

situation, CDM yields accurate results with 12–16 rays

whereas DTM requires more number of rays.

For a given set of parameters, to have an idea of

computational time required by the CDM and the

DTM, test runs were taken on HP-9000 computer. For

example, for N ¼ 0:01, x ¼ 0:0, sL ¼ 1:0, hN ¼ 0:5 and

�S ¼ �N ¼ 1, for getting the total heat flux WT within 5%

of the exact result, CPU time in CDM has been found to

be 2.57 seconds, whereas the same in DTM has been

found to be 8.03 seconds. This signifies that CDM is

computationally more efficient than the DTM.

For a given enclosure optical thickness sL, the effect of
conduction–radiation parameter N on total heat flux WT

has been shown in Fig. 6. Results have been presented for

sL ¼ 0:1 and 1.0. In both the cases, north boundary

temperature hN ¼ 0:5,medium is absorbing–emitting and

boundaries are black. Both DTM and CDM results are

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Variation of non-dimensional conductive heat flux WC, radiative heat flux WR and total heat flux WT with normalized optical

depth s=sL for various values of conduction–radiation parameter N.
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compared with exact results generated by the authors.

CDM results with 8 rays are found in very good agree-

ment with the DTM results with 8 rays and exact results.

To show the effect of conduction–radiation parame-

ter N on the values of conductive heat flux WC, radiative

heat flux WR and the total heat flux WT at the two

boundaries, results have been presented in Fig. 7. In

Figs. 7(a) and (b), these results are presented for

sL ¼ 0:1 and 1.0, respectively. In both the cases, north

boundary temperature is half of that of the south

boundary temperature hN ¼ 0:5. These effects are

checked for x ¼ 0:0, 0.5 and 0.9. In these figures, suffix

(N and S) over respective heat flux represents heat flux

over a particular boundary. For example, WCN repre-

sents conductive heat flux WC over north boundary. One

interesting point to be noted from these plots is that it is

Table 1

Comparison of total heat flux WT calculated from CDM with DTM and exact results [1]; �S ¼ �N ¼ 1:0, x ¼ 0:0

sL hN N Non-dimensional total heat flux, WT

CDM 8

rays

CDM 12

rays

CDM 16

rays

DTM 32

rays

DTM 64

rays

Exact [1]

0.1 0.5 0 0.857 0.857 0.8575 0.8585 0.8587 0.859

0.01 1.079 1.079 1.079 1.079 1.079 1.074

0.1 2.879 2.88 2.88 2.879 2.879 2.88

1.0 20.88 20.88 20.879 20.879 20.88 20.88

10.0 200.88 200.88 200.88 200.88 200.88 200.88

1.0 0.1 0 0.545 0.550 0.554 0.553 0.554 0.556

0.01 0.630 0.634 0.636 0.630 0.630 0.658

0.1 0.968 0.972 0.974 0.968 0.968 0.991

1.0 4.197 4.201 4.204 4.197 4.198 4.218

10.0 36.59 36.6 36.6 36.59 36.59 36.6

1.0 0.5 0 0.511 0.516 0.519 0.518 0.519 0.518

0.01 0.559 0.563 0.572 0.566 0.567 0.596

0.1 0.768 0.772 0.774 0.768 0.769 0.798

1.0 2.572 2.575 2.580 2.571 2.572 2.60

10.0 20.57 20.57 20.58 20.57 20.57 20.60

10.0 0.5 0 0.108 0.108 0.106 0.108 0.107 0.102

0.01 0.111 0.113 0.114 0.101 0.110 0.114

0.1 0.130 0.131 0.132 0.134 0.132 0.131

1.0 0.312 0.313 0.314 0.315 0.315 0.315

10.0 2.112 2.113 2.114 2.114 2.114 2.114

Table 2

Comparison of heat flux result WT calculated from CDM with DTM and exact results [4]; �S ¼ �N ¼ 1:0

N x a1 Non-dimensional total heat flux,WT for sL ¼ 1

CDM 16

rays

CDM 64

rays

DTM 16

rays

DTM 64

rays

Exact [4]

1.0 0 0 2.575 2.579 2.572 2.572 2.60

0.5 0 2.544 2.546 2.548 2.55 2.55

0.5 1.0 2.564 2.565 2.585 2.594 2.594

0.5 )1.0 2.490 2.492 2.510 2.512 2.512

Fig. 6. Variation of total heat flux WT with conduction–radia-

tion parameter N.
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mainly the conductive heat flux WC at the boundary that

keeps on increasing with conduction–radiation param-

eter N. There is not much variation in the radiative heat

flux WR at the boundary. For sL ¼ 0:1, on both the

boundaries, WR is constant. For sL ¼ 1:0, WR is different

at the two boundaries and this difference decreases with

decrease in N. For the limiting case, N ¼ 0, the problem

changes to radiative equilibrium case, WR is same at the

two boundaries. Further it is observed that when

problem is highly conduction dominated (N ! 1), WC

is same at the two boundaries. With decrease in the

values of N, i.e, as radiation starts dominating, differ-

ence between the WC values at the two boundaries in-

creases. For a given value of x, WC is lower at the south

boundary. Further it can be observed from these results

that x has more pronounced effect on WC than on WR.

Effect of x on WC decreases with increase in N.

5. Conclusions

Combined conduction–radiation problem in one-di-

mensional gray planar absorbing, emitting and aniso-

tropically scattering medium has been investigated by

the CDM. Like DOM, DTM and FVM, CDM code for

radiative problems has been found compatible with

conduction code. Temperature distributions have been

found for various values of optical thickness sL, con-
duction–radiation parameter N, boundary emissivity �,
scattering albedo x, anisotropy factor a1 and boundary

Table 3

Comparison of heat flux WT calculated from CDM with exact results [1]; �S ¼ �N ¼ 0:1

sL hN N Non-dimensional total heat flux, WT

CDM 8 rays CDM 16 rays CDM 32 rays Exact [1]

0.1 0.5 0 0.494 0.494 0.494 0.49

0.01 0.276 0.277 0.276 0.267

0.1 2.077 2.077 2.077 2.078

1.0 20.07 20.07 20.07 20.08

10.0 200.07 200.07 200.07 200.08

1.0 0.1 0 0.510 0.511 0.511 0.51

0.01 0.196 0.196 0.196 0.22

0.1 0.567 0.568 0.570 0.591

1.0 3.812 3.811 3.810 3.752

10.0 36.21 36.21 36.21 36.22

1.0 0.5 0 0.0479 0.0479 0.0479 0.047

0.01 0.155 0.155 0.155 0.156

0.1 0.403 0.401 0.400 0.393

1.0 2.220 2.220 2.223 2.245

10.0 20.22 20.22 20.22 20.25

10.0 0.5 0 0.039 0.039 0.0387 0.036

0.01 0.086 0.087 0.088 0.090

0.1 0.112 0.113 0.113 0.115

1.0 0.304 0.302 0.302 0.297

10.0 2.104 2.105 2.106 2.107

(a) (b)

Fig. 7. Effect of conduction–radiation parameter N on non-dimensional conductive, radiative and total heat fluxes at the boundaries.
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temperatures. CDM has been found to correctly predict

temperature and heat flux information. Relative contri-

butions of conduction heat flux WC and radiation heat

flux WR to the total heat flux WT have also been pre-

sented for various values of N and sL. These results very
correctly show how relative contributions of each mode

vary. For comparison purpose, for some test cases, re-

sults for heat flux have also been generated by the DTM

and both these results have been compared with exact

results presented in the literature. CDM results have

been found in very good agreement with other methods.

Although, in conduction dominated situation, both

CDM and DTM have been found to take approximately

same amount of computational time, in radiation

dominated situation, CDM has been found much more

economical than the DTM.
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